Integrated Paper Machine Control: Past, Present, and Future

by
Charles F. Goodsoe
Pulp & Paper Marketing Manager
Bailey Controls

Presented to
TAPPI '88 Engineering Conference
Chicago, Illinois
September 19-22, 1988
INTEGRATED PAPER MACHINE CONTROL – PAST, PRESENT, FUTURE

Charles F. Goodele
Pulp & Paper Marketing Manager
Bailey Controls Company
Wickliffe, Ohio
USA

ABSTRACT

The paper-making processes have undergone many changes over the years. In the past we had operators who were skilled in the art and “feel” of papermaking. Today, with sophisticated Distributed Control Systems we see a true integration of paper machine control. The traditional regulatory control, advanced control, motor start/stop, scanning sensors, drives and roll-tracking, are now integrated into a “single window” environment. Tomorrow will bring revolutionary systems such as non-scanning sensors and expert systems using the latest artificial intelligence techniques to allow the total mill to be operated in a strategic process management manner.

INTRODUCTION

Papemaking is no longer just an art, but a sophisticated process involving many different disciplines and control systems.

Past – The Paper Industry has evolved from the old 40 round chart recorder/controller of the 50s & 60s to the IBM 1800’s, and mini-computer control systems of the 70s.

Present – With today’s rapidly changing technology, Distributed Control systems with multi-function controllers have the power of yesterday’s mainframe computers, or large panel board systems. With a “single window” an operator can, with one or two keystrokes, startup and control his Paper Machine with increasing sophistication.

Future – Tomorrow we will see complete non-scanning sensors to measure and control high frequency disturbances. In addition, we will be able to track the total final product quality information back through the complete Pulping & Paper Making process.

PAST

In the first half of the 1900’s Papermaking was considered an operating art. There was little instrumentation other than a few scattered indicators, gauges and recorders. Most paper machines were designed to run at speeds of less than 1000 feet per minute and trimmed less than 150 inches with manual regulations of the process and of the machine drive and components. Product testing was entirely off-line.

Early Paper Machine Gauges

In the early 1950’s some of the early gauging companies included TraceLab, Industrial Nucleonics, Isotope Products and Curtiss Wright.

The early Basis Weight gauges were mounted on simple C Frames that often measured at a single point across the machine. To overcome the possibility of measuring at either an unrepresentative heavy or light spot across the machine, the measuring area was 14 inches in the cross-direction (CD) by two inches in the machine direction (MD). An averaging of the short term machine direction variations was achieved by using a fairly long, one to three minute response time. The gauge would respond to long term MD trends in Basis Weight but was incapable of responding to short term MD variations. In addition, due to the short C. Frame, it could not be used for cross direction profiling. [1]

 Shortly after the Basis Weight gauges were introduced came the moisture gauge, both conductivity and RF types were used. The two sensors were then mounted together on a “C-Frame” to scan across the entire web. Later in the sixties came the on-line Caliper & Formation sensors. A typical Weight & Moisture direct reading system with automatic control cost between $70-$80K.

Often the acceptance of the gauging system by the people who were using the equipment, was predicated on the clarity and accuracy of the information presentation. Early in the on machine sensor history, direct reading scales and wide strip chart recorders were first justified to management as an operating record which could be easily interpreted by operators for control purposes and by management personnel for economic justification studies.
This conventional approach to recording the machine direction averages had the advantages of high readability, ready trend detection, and was unambiguous as a final product record. Little attention was paid to profile records from which the operator was expected to make a trend analysis and presumably take corrective action. Often the profile information was presented in such a way as to be used as a rough indication of the overall profile but of little use for fine adjustment.

The X Y recorder was an ideal solution. Basically, the X Y recorder was a modification of a standard single pen recording system but provided a means of plotting one variable as a function of another, i.e., vertical axis accepted a measured variable, and the horizontal axis represented the simultaneous position of the measuring gauge. As a historical note, the X Y recording system was originated by Noel Obenshain of Westvaco back in 1955. Typical recorder displays are shown in Figures 1 & 2.

![Figure 1: Strip Chart Recorder Display](image1)

![Figure 2: X Y Recorder Display](image2)

With the profile information available and with increased emphasis on the abilities to set the slice accurately, the slice lips were changed to include micrometer readouts, and motorized control was added enabling individual adjustments. This was the start of today's automatic CD Control.

In 1957 J. Franklin of Bowaters commented that before papermaking can be termed a truly automatic process, each step on the machine must be measurable and controlled, not only longitudinally, but laterally. In this field the Papermaker & Process Control Engineer meets in designing an existing future.

Early Regulatory Control

In the period up to 1960 analog pneumatic control was almost exclusively used. Controllers were direct connected using circular chart recorders with pressure & temperature capillaries. Then there was a major conversion to transmitting systems. With pneumatic transmitters, measurements were converted to pneumatic signals of a fixed range which were transmitted to a receiver located in a control center. Controllers in the control center then computed (pneumatically) the appropriate control actions which were again transmitted back to the field located regulating devices such as valves, drives and others. With transmission based systems, there was a considerable reduction of installed control system costs.

Paper Machines were being instrumented using groups of instrument control centers rather than scattered instrumentation. Operating Instrument control centers were beginning to be designed for Stock Blending, Paper Machine Wet End, Press Section, and Dryer Sections. Many control centers had attractive color graphic layouts of their control process.

Early Computer Control

There were two types of early computer control system. First, the large main frame (IBM 1800) types used to automate or control the complete Papermaking process. Second, we had the small mini computer (32K). Packaged Control System supplied by the various gauging companies.
With both of these types of computer control systems came the first use of CRT displays and typewriter printers. Operator interfaces became much more extensive with modern keyboards, video displays and customized printed reports. These systems represented a combination of supervisory & direct digital control. Many control loops had analog back up controllers function as digital-to-analog converters in the computer mode and could be switched either automatically or manually.

As experience with these systems grew, operator acceptance increased. It was found that when a computer was added to the system the increase in uniformity was usually not spectacular. The reason for this is that the two main points with a computer were its speed of operation and its memory. With a Dry End beta gauge controlling the stock valve, the computer's speed and memory were of little value. However, if the computer was used with flow and consistency data gathered at the headbox, the computer had the ability to predict what the basis weight would be at the reel. In this feed forward type of control the computer excelled and substantial improvements in short term control uniformity could be achieved.

As process control computers became more popular in the mid 1970's, there was a technological shift away from the pneumatic control panels and we found the all electronic system. Computers and application packages were becoming available at lower initial cost. We also found that the new solid state electronic transmitters offered better accuracy, repeatability, and dependability while reducing maintenance. Microprocessor based systems are now available which encompass all elements of control including those previously handled by separate programmable logic controllers and analog system in a single product line.

The results and acceptance of these early Paper Machine Computer Control systems have been well documented. In most cases these systems, some installed two decades ago, are just now being replaced with the next generation of control; the microprocessor based Distributed Control System.

PRESENT

Distributed Control Systems

With today's microprocessor technology the role of the Distributed Control System has expanded from one of replacing analog instrumentation to having the potential in both size and function to be the backbone of the Millwide Control System. We have seen Distributed Control Systems fully distributing the measurement and control functions that previously were accomplished in larger single computer systems.

A modern Distributed Control System (DCS) must have the architecture to properly partition the control function narrow enough so that a single point of failure does not require a total system shutdown. It must offer technological transparency to allow today's systems to be compatible with tomorrow's technology. The vendor must strive to keep his product contemporary to sustain new business, but must also continue to provide parts and service for the installed life of the products.

Today's systems require an open system architecture where communications are possible both horizontally and vertically at all levels

Module to Module
Module to Foreign Device
Process Unit to Process Unit
System to System
System to Computer

Recently multifunction controllers (MFC's) have been introduced with more power and flexibility than ever before 32 bit microprocessor, full redundancy multi-tasking, over 256K bytes of memory.

One of the most difficult historical problems, both for control vendors and users, has been control system obsolescence. Both vendors and users are driven by the apparently diametrically opposed needs to have the benefits of the latest technology while avoiding the cost and production interruptions associated with periodic total replacement of instrumentation systems. [5]

Several of today's systems have the ability to provide direct access to configuration data through the use of a Personal Computer or Engineering Work Station.

Configuration is referred to in today's DCS as the "programming" of the control logic. This is primarily done in SAMA language function codes. (See Figures 3 & 4). This allows the Control Engineer the ability to see the process through a glass box rather than the
"black box" of software extensive system of yesterday. The Engineering Work Station (EWS) provides configuration, tuning and documentation support to the Engineering & Maintenance personnel. Configurations may be generated off line without affecting control or interfering with the process operators. The new or revised configurations can be stored on diskettes and/or directly downloaded to the DCS. Using the Computer Assisted Drawing (CAD) software, configuration loop/logic drawings are generated concurrently with the configuration design, providing a powerful and accurate documentation standard [6].

Figure 3: Level Control P&ID

Systems Integration
An objective of today's DCS is to provide one integrated system capable of handling all process control functions formerly handled by several systems (PLC's, controllers, computers, etc.). A modern system must be capable of easily and cost effectively integrating the following control functions:

Basic Regulatory Loops
Motor Start/Stop Controls
Interlocking & Sequential Functions
Advanced/Multi Variable Control Strategies

Complex Mathematical Process Models for Optimization

It has been the writer's experience that PLC's are used with interfaces to the DCS only where they presently exist before modernization, where there are separate instrument/electrical maintenance jurisdictions, or when there is a very high concentrated number of digital I/O. In normal Paper Machine modernizations, motor start/stop functions are totally integrated into the DCS. When using either DCS's or PLC's, scan time should be kept in mind especially where quick control speed is critical.

Interfacing DCS's to other foreign devices, i.e., Gauging Systems, Drive Systems, Roll Finishing Systems, etc., is usually accomplished by using an RS 232C serial interface. These interfaces are usually fairly straightforward using standard protocol. In some cases the user friendliness of devices becomes political at which time the end user needs to clarify which vendor is responsible for what.

See Figure 5

Fig 4 Level Control SAMA (Function Code) Logic

Fig 5 Millwide Control System Selection Guide
Advanced control within a DCS has increased as its technology offered more computing power and flexibility. True single window systems are now beginning to appear. This concept or consolidation will allow the operator to view his complete paper machine process in just one type of window or CRT display. This also improves the maintenance of the overall operation as the number of computer systems or boxes is reduced into one standard design.

Examples of advanced control strategies that have been accomplished in today's Distributed Control Systems in the Paper Machine areas are:

- Couch Vacuum/Refiner Control
- Consistency Control (Feed forward)
- White Water Smoothing
- Group Start/Stop Sequences
- Cold Start

Headbox Controls:

- Total Head & Level
- Jet/Wire Ratio
- Remote Slice Control
- Angle of Impingement
- Point of Impingement
- Headbox Flow, Consistency
- Machine Retention
- Slice Rectifier Roll Speed
- Steam & Condensate
- Dryer Pressure Letdown
- Thermocompressor
- Machine Speed & Draw
- MD Basis Weight & Moisture Control
- CD Basis Weight, Moisture, Caliper
- Coordinated Grade Change
- Alarm Management
- Profile Display

Figures 6, 7, 8, 9, 10 show examples.
Alarm Management

With the ability of today's systems to control the complete process from one console containing many thousand control points, the issue of process alarms need to be addressed. How many times have operator consoles been observed with flashing unacknowledged alarms? Systems now have multi-level alarm management capabilities and event alarm suppression. Why, when during a shift break, have numerous flow and rate alarms going off when this is a completely normal condition when that event (sheet break) occurs? Why not have these points have new alarm limits set when certain events occur? Most systems have dedicated panels or graphic pages devoted just for alarm annunciation. This allows the operator with minimal key strokes to identify the alarm and take corrective action. A challenge exists to both the systems designers and mill operations to engineer alarm management into the system correctly so we can eliminate the necessity of operators monitoring (or ignoring) meaningless alarms.

Statistical Process Control (SPC)

In the last several years the application of statistical process control (SPC) has become a prime issue in this industry. Increased resource costs and global competition have fostered the spread of the computerized Statistical Quality Control (SQC) techniques and Statistical Process Control (SPC) procedures from discrete manufacturing operations to continuous processing operations. Advances in technology have allowed these statistical operations to be performed or accomplished on line in the DCS [7].

FUTURE

As Chris Liakos wrote, someone once said, if he knew he had been living in an era, he would have paid more attention to what was going on around him at the time [8]. The next era is here so we must pay attention. We have heard and seen the start of millwide systems. These systems will continue to evolve and allow optimization of all individual mill process units and the coordination of each area to one total mill operating plan. In doing so, mill management will have real, on-line control of production, rates, material inventories and schedules.
Areas that will have a major impact on the next era are:

- Non-scanning Paper Machine Sensors
- Process Optimization
- Expert Systems
- Strategic Process Management

Non-Scanning Paper Machine Sensors

As this paper reflects, paper machine gauging systems have been with us for over a quarter of a century. Even though there have been six generations of sensor development, the technique of scanning the sheet has changed very little. We are beginning to see various non-scanning individual sensors when development of the full complement of basic measurements is accomplished. Weight, moisture, caliper) then high frequency, minute measurements can provide a new dimension in paper machine control.

Process Optimization

Process optimization is one of the main goals of a mill-wide system. It can be utilized to minimize all operating costs by actively supervising the various production departments within the mill, including the paper machine. The major economic benefits are in the area of increased production and reduced operating cost.

By maximizing production, a grade target structure can be entered into the system and it will determine optimal inventory targets and coordinate production rates for all operating departments. This results in reducing operational disturbances, improving optimal production planning, quality control, energy production coordination and energy management.

Expert Systems

The uses of Expert Systems and Artificial Intelligence are increasing at a high rate. Expert Systems are rapidly moving out of the off-line environment and into on-line process control applications. Usually integrated with today's distributed control system.

The field of Expert Systems can be defined as the branch of Artificial Intelligence that attempts to model and retrieve human knowledge about objective concepts, facts and their relationships.

An example of an Expert System for the paper machine area is to optimize the furnish blend and operating parameters for the development of new paper grades by efficiently reviewing and selecting bits of previous production strategy which lend themselves to meeting customer specifications.

The era of large stand-alone computers running Expert Systems is over. Expert Systems will be embedded in process control modules in multiple distributed processing units. These distributed Expert Systems will be available and cost-effective for a large number of applications at a minimum cost to the user.

Strategic Process Management

With today's increased global competition in our industry, the need for focus on improving profitability and quality will require us to look at a higher level of control. Strategic Process Management. This represents the top of the control hierarchy and may be the objective of mill management. With the utilization of the full power of modern distributed control systems, this is capable of achievement.

The Control Hierarchy

```
  STRATEGIC CONTROLS
    • MILL-WIDE SYSTEMS
      • STRATEGIC PROCESS MGMT
  TACTICAL CONTROLS
    • OPERATIONS CONTROLS
      • OPT M & M CONTROLS
      • OPERATIONS CONTROLS
  REACTVE CONTROLS
    • ADAPTIVE CONTROLS
      • FAULT DETECTION
      • SAFETY SYSTEMS
      • MULTIVAR CONTROLS
  REFLEXIVE CONTROLS
    • SIMPLIFIED REGULATORY AND SERVO CONTROLS
      • SIMPLIFIED SEQUENTIAL CONTROLS
      • SIMPLIFIED INTERLOCKING
      • DIGITAL CONTROLS
```

Figure 11 The Control Hierarchy
The key objective to a plant wide strategic process management system should be to automate process operations as much as practical, and present information critical for control cost analysis of current and future operations. Further it should also provide a communication system for implementing operational plans.

It is evident that significant cost savings can be achieved through coordination of the complex production, quality, energy and maintenance functions of an integrated mill. This forms the essence of Strategic Process Management. The synergistic benefit of properly integrated and coordinated controls yields a whole (total mill wide control), which is greater than some of its component parts (unit optimizations). [11]

CONCLUSION

Paper Machine Control has changed considerably over the last three decades. We have seen it change from total manual control to a cumbersome main frame computer control to today’s user friendly system using the latest microprocessor technology. Tomorrow we will see total plant wide optimization, and we will continue to evolve through the many changes and operations characteristic of a natural progression.

REFERENCES

3. Franklin, J N, TAPPI Vol 40, No 7, (1957), P 171A 175A.

5. Keyes, M.A. TAPPI Vol 67, No 2 (February 1984), P. 56 57

