MINI-LINE* 500 HAND/AUTOMATIC STATION

REG. S FAT OFF.

BAILEY METER COMPANY • WICKLiffe, OHIO 44092
INDEX

INSTALLATION

Pre Service Adjustment Check 3
Mounting H/A Station on Panel 3
Installing Connecting Tubing 3
Cleaning Scale Cover 3

OPERATION

Transfer from AUTO to HAND 4
Transfer from HAND to AUTO 4
Alternate HAND to AUTO Transfer 4

ROUTINE MAINTENANCE

CORRECTIVE MAINTENANCE

Vertical Gage Unit Adjustment 7
Hand Relay Disassembly 8
Hand Relay Adjustment 8
Front Plate Disassembly 8
Shut Off Valve Disassembly 9
Valve Operator Lever and Shaft Disassembly 9
Drive Shaft Disassembly (Control Knob to Relay) 9

SCHEMATIC OPERATION

Typical Application of Hand/Automatic Station 9
Hand Relay 10

REPLACEMENT PARTS

Space Parts Kits 11
Ordering Individual Parts 11

EXPLANATION OF NOMENCLATURE 11
INSTALLATION

Pre Service Adjustment Check

IMPORTANT: Before placing H'A Station in service, check adjustment of vertical gage units as outlined below. For convenience, perform this check at a test bench before the H'A Station is installed in the panel.

1 Position H'A Station at angle at which it will be mounted in service. Apply pressure corresponding to 10% scale to H A Station input connection. If pointer reads correctly, proceed to step 4.

2 If pointer does not read correctly, remove vertical gage unit from H A Station as outlined in Figure 1.

3 Remove snapout cover (Figure 2) and turn zero adjustment screw until pointer reads correctly. Reinstall cover.

4 Apply pressure to gage unit corresponding to 90% and 50% scale. If pointer readings are correct, proceed to step 5. If readings are incorrect, refer to "Vertical Gage Unit Adjustment", page 7.

Mounting H A Station on Panel

Hand Automatic Stations are designed for plug-in mounting in a panel mounted enclosure (Figure 3). Install enclosure as follows:

5 Make panel cutout in accordance with Figure 3.

6 Loosen mounting screws on front plate which secure H A Station to enclosure and remove Station.

7 Slide enclosure thru cutout from front of panel.

8 Place mounting clips (in bag tied to enclosure) in position on enclosure. Tighten clips securely against panel.

9 Slide H A Station into enclosure and secure with mounting screws in front plate.

Installing Connecting Tubing

10 Connect external tubing to manifold connections on rear of enclosure (Figure 3). Connection ports are 1/4-18 NPT female. Use 1/4 inch O.D. copper, aluminum or plastic tubing.

Cleaning Scale Cover

11 Remove protective tape from scale cover. Clean cover with toothpaste or Plastar*. Plastic cover cleaner and polish (obtainable from Bailey Meter Company in 10 ounce jar - specify Part Number 199274-1).

CAUTION: Do not use a solvent which will scratch cover finish or react with plastic cover.
OPERATION

Before transfer conditions within the control system must be set so there is little or no variation in control pressure to the power unit as transfer takes place. Procedures for transferring from AUTO to HAND and from HAND to AUTO are outlined below. Refer to Figures 4 and 5.

Transfer from AUTO to HAND

1. With HAND control knob set transfer pressure (gage C) equal to control pressure (gage D).

2. Turn transfer switch to HAND.

Transfer from HAND to AUTO

1. With HAND control knob slowly set control pressure (gage D) equal to transfer pressure (gage C).

2. Turn transfer switch to AUTO.

Alternate HAND to AUTO Transfer

The procedure above for transferring from HAND to AUTO may not always be practical. In this case the alternate method given below may be followed.

CAUTION This alternate procedure should be used only where the H/A Station transfer pressure (i.e., system set point, controller output, etc...) may be changed without endangering the process.

1. Adjust set point (or other system condition) until transfer pressure (gage C) is equal to control pressure (gage D).

2. Turn transfer switch to AUTO.

3. Return set point to desired value.
FIGURE 4 H/A Station Controls and Gages

FIGURE 5 - Schematic of H/A Station
ROUTINE MAINTENANCE

1. Maintain a clean air supply, free of oil or moisture.

2. Check filter in supply inlet port at manifolds shortly after installation. If filter (Item 3B and 3C, Figure 11) must be replaced, remove wire mesh disc felt pad, and second wire mesh disc. Install new filter, making certain wire mesh disc is inserted in inlet port before inserting felt pad.

3. Periodically depress orifice clean out plunger (Figure 6) on rear of hand relay to ensure that the orifice remains open and clean. CAUTION: This operation should only be performed when relay is being bench tested since depressing the plunger while relay is in service may disrupt the process.

4. Whenever necessary, clean plastic scale cover as follows:
 a. Remove (and replace) scale cover as shown in Figure 7.
 b. Clean cover with a soft cloth which will not scratch the plastic surface. Use tooth paste or "Plastair" plastic cover cleaner and polish (obtainable from Bailey Meter Company in 10 ounce jar specify Part No. 1992741.) Do not use a solvent which will scratch cover finish or react with plastic cover.

FIGURE 6 Rear View of H/A Station
(Removed from Enclosure)

FIGURE 7 Removing and Replacing Vertical Gage Unit Scale Cover
CORRECTIVE MAINTENANCE

Vertical Gage Unit Adjustment

If operational faults occur which are traced to the vertical gage units, make the following adjustment checks:

1. Remove gage unit from H/A Station as shown in Figure 1. Pry off snapout cover and remove side cover for access to gage unit adjustments (see Figure 2).

2. Apply pressure to Bourdon tube and check block assembly for leakage with a soap suds solution. If a leak is found, replace entire gage unit. The damaged unit may be returned to the factory for repair.

3. Check all links to see that they are properly connected and that they move freely with Bourdon tube movement.

4. Make certain that indicating pointer does not rub against side or face of scale. If necessary, bend pointer slightly until it clears scale.

5. Check pointer adjustment as outlined below:

 a. Apply pressure to gage equivalent to first major scale division above 75% scale. If pointer does not read correctly, turn zero adjustment screw (Figure 8) until desired reading is obtained.

 b. Apply pressure to gage equivalent to first major scale division below 100% scale. If pointer does not read correctly, turn range adjustment screw (Figure 8) until desired reading is obtained.

 c. Repeat steps 5a and 5b until pointer reads correctly at both scale divisions.

 d. Apply pressure to gage equivalent to midscale division. If pointer does not read correctly, but reads correctly in steps 5a and 5b above, alter the shape of U-link at free end of Bourdon tube as follows: 1) If midscale pointer reading is low, spread link slightly. or 2) If midscale pointer reading is high, close link slightly.

6. Repeat steps 5a thru 5d until pointer reads correctly over full scale.

7. Apply 2 psig to Bourdon tube (pointer will read slightly below minimum scale mark). Loosen minimum stop screws (Figure 8) and position minimum stop next to Bourdon tube end stop, tighten screws.

8. Apply pressure to Bourdon tube corresponding to maximum scale value plus 0.25 psig (pointer will read slightly above maximum scale mark). Loosen maximum stop screws and position maximum stop next to Bourdon tube end stop, tighten screws.

9. To return gage unit to service, reverse the order of the operations outlined in step 1 above.

FIGURE 8 Vertical Gage Unit Adjustments
Hand Relay Disassembly

To disassemble the Hand Relay (Part No 5321995) for cleaning or replacement of parts proceed as follows:

1. Refer to Figure 11 Disconnect tubing and remove two screws (26) holding gage support (13) to support bracket assembly (30).

2. Remove screws holding manifold to Relay and slide manifold and support bracket rearward.

3. Remove two socket head screws (36) holding Relay to support bracket (30) and remove Relay.

4. Refer to Figure 12 Unscrew valve cap (7) and remove valve stem (11), inlet valve seat (13), and valve seat spring (15). CAUTION: Do not disturb setting of relay adjustment screw (Figure 6) at center of valve cap. This setting is factory set and should not be disturbed unless control bellows has been removed or replaced (see 'Hand Relay Adjustment').

5. Unscrew orifice clean out assembly (4) and orifice (14).

6. Relieve spring compression by rotating center adjustment gear (27) counterclockwise until it turns easily.

7. Remove four nuts (at corners of valve housing face) and screws securing spring housing (23) to valve housing (9) and separate housings.

8. Pull control bellows assembly (16) from valve housing (9). Control bellows assembly is held by exhaust valve diaphragm which snaps into place around valve seat.

9. If desired, unscrew loading spring assembly (19) from adjustment shaft (left hand) thread.

10. To reassemble reverse above procedure observing the following precautions:

 a. When replacing control bellows assembly (16), make certain exhaust valve diaphragm (29) is properly snapped into place around exhaust valve seat.

 b. When replacing orifice clean out assembly (4), make certain that clean out wire is not bent and passes clean thru the orifice.

 c. Make certain that all O rings are undamaged and properly installed. Apply lubricant to O rings when reassembling relay.

Hand Relay Adjustment

1. Connect output pressure line of Relay thru a petcock to a volume chamber equipped with a suitable pressure gage (0-30 psig) for indicating chamber pressure. Volume chamber may be any pressure tight container with volume of about 300 cubic inches.

2. Open petcock and adjust H A Station control knob to obtain 3 psig pressure in volume chamber.

3. Close petcock and adjust control knob to obtain 15 psig (for 3-15 range) or 27 psig (for 3-27 range) output pressure from Relay (read output pressure on H A Station gage).

4. Open petcock and note time rate of pressure increase in volume chamber.

5. Close petcock and adjust control knob to obtain 3 psig output pressure from Relay.

6. Open petcock and note time rate of pressure decrease in volume chamber.

7. If inlet valve seat is properly adjusted, the time rate of pressure increase as noted in step 4 will be equal to the time rate of pressure decrease as noted in step 6. If these rates are not equal (or if the control bellows or nozzle bellows has been replaced), it will be necessary to make the following adjustments:

 a. If time rate of pressure increase is greater than the rate of pressure decrease, turn adjustment screw (Figure 6) counterclockwise.

 b. If time rate of pressure decrease is greater than the rate of pressure increase, turn adjustment screw clockwise.

NOTE: By turning the relay adjustment screw (Figure 6) on the rear of the H A Station, the inlet valve seat position can be changed with respect to the neutral position of the exhaust valve seat, in effect, controlling the relative openings of the inlet valve and exhaust valve for a given position of the control bellows.

Front Plate Disassembly

1. Remove vertical gage units as shown in Figure 1.
2 Refer to Figure 11. Remove HAND control knob (27) by driving out steel lockpin (28) and pulling knob off shaft. Then slide knob off shaft. AUTO HAND transfer switch need not be removed.

3 Remove two screws (15) at rear of front plate (17) which secures plate to H/A Station frame.

4 To reassemble, reverse the above procedure, conserving the following precautions:
 a. When placing front plate (17) on H/A Station frame, fit pins at top and bottom of plate into corresponding slots in frame and align transfer switch and valve operator lever (22) so that transfer switch pin fits into hole at top of lever (22).
 b. When replacing control knobs, slide knobs on respective shafts. Replace lockpin in HAND control knob shaft.

Shut Off Valve Disassembly

1 Refer to Figure 11. Disconnect tubing at vertical gage units and remove screws at Relays.

2 Remove four screws (12) and (14) (two at front end of plate and two at rear end next to nameplate) which secures shut off valve mounting plate (top of H/A Station) to frame. Do not disturb screws holding valves to plate.

3 Set transfer switch (23) (or valve operator lever (22) if front plate has been removed) in vertical position between AUTO and HAND.

4 Slide shut off valve assembly (10) (plate valves and tubing) to rear to disengage valve stems from valve operator shaft. When disengaged, assembly can be lifted from H/A Station.

5 To disassemble individual shut off valve, unscrew plug (10c) at bottom of valve and remove spring (10d), stem (10b), and diaphragm (10f). To reassemble, reverse the above procedure. Valve stems must be in alignment to engage valve operator shaft.

Valve Operator Lever and Shaft Disassembly

1 Remove vertical gage units (shown in Figure 1), front plate (see above) and shut off valve assembly (see above).

2 Refer to Figure 11. Remove hex nut (25) at front end of shaft and slide valve operator lever off shaft.

3 Unscrew bearing (9) which supports end of shaft.

4 Slide shaft to rear until front end clears supporting bearing. Remove shaft from frame.

5 To reassemble, reverse the above procedure.

Drive Shaft Disassembly (Control Knob to Relay)

1 Remove vertical gage units (as shown in Figure 1) and front plate (see above).

2 Refer to Figure 11. Remove retaining ring (34) at rear end of shaft.

3 Back off cone point set screw (32) in periphery of gear (33) until gear is free of shaft.

4 Slide shaft out thru front of unit and remove gear.

5 To reassemble, reverse the above procedure.

SCHEMATIC OPERATION

Typical Application of H/A Station

Figure 9 shows a typical control application. A signal pressure proportional to the measured variable is applied to the A bellows of the Proportional Plus Integral Controller (indicated on gage A). The Controller output pressure is transmitted thru the H/A Station to the power unit.

When the H/A Station is in the HAND position, tie back pressure is provided from connection 4 thru connection 5, shut off valve V5 and connection 3 to the C bellows of the Controller. On HAND operation, the tie back pressure holds the Controller output pressure approximately equal to the control pressure, facilitating smooth transfer to automatic operation. Where tie back pressure is not required, connection 4 is plugged and connections 3 and 5 are left open to atmosphere.
Hand Relay

Hand output pressure is established by the Hand Relay (Figure 10). Compression of the loading spring is opposed by pressure in the control bellows so that forces due to spring compression and output pressure are always equal when the unit is balanced. Pressure in the control bellows is regulated by the inlet exhaust valve assembly. At balance, the inlet valve is held closed by the difference between supply pressure and control bellows (output) pressure. Leakage of supply air thru the bleed orifice maintains the exhaust valve in a floating position.

Turning the HAND control knob in the "increase" direction compresses the loading spring compressing the control bellows, closing the exhaust valve opening the inlet valve, and admitting supply air to the control bellows. Control bellows pressure increases until bellows expansion is sufficient to restore the inlet exhaust mechanism to its original position (inlet valve closed, exhaust valve floating). Output pressure is then proportional to the increased loading spring compression.

Turning the control knob in the "decrease" direction reverses the operation described above.

FIGURE 9 - Typical Application of H/A Station

FIGURE 10 - Schematic of Hand Relay
REPLACEMENT PARTS

Spare Parts Kits

The Spare Parts Kits shown in Figure 11 12, and 13 should be carried in stock. Specify the Spare Parts Kit part number to order a complete kit.

Ordering Individual Parts

Figures 11, 12, and 13 are Parts Drawings of the Hand/Automatic Station. Normally, these drawings apply to the unit furnished. However, there may be individual differences in specific units because of:

a. design changes made since the printing of this Instruction Section, or

b. special design of the Hand/Automatic Station to make it suitable for a special application.

Therefore, when ordering parts, assure the receipt of correct replacements by specifying the Hand/Automatic Station Module Part Number.

EXPLANATION OF NOMENCLATURE

<table>
<thead>
<tr>
<th>H/A STATION MODULE PART NO.</th>
<th>H/A STATION NOMENCLATURE*</th>
<th>RANGE (PSIG)</th>
<th>LEFT GAGE SCALE LEGEND</th>
<th>RIGHT INDICATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5321605 1</td>
<td>AJ02B10</td>
<td>3-27</td>
<td>Loading</td>
<td>--</td>
</tr>
<tr>
<td>5321605 2</td>
<td>AJ02B20</td>
<td>3-27</td>
<td>Loading</td>
<td>Position</td>
</tr>
<tr>
<td>5321605 3</td>
<td>AJ02B50</td>
<td>3-27</td>
<td>Direct Reading**</td>
<td>--</td>
</tr>
<tr>
<td>5321605 4</td>
<td>AJ01B10</td>
<td>3-15</td>
<td>Loading</td>
<td>Position</td>
</tr>
<tr>
<td>5321605-5</td>
<td>AJ01B20</td>
<td>3-15</td>
<td>Loading</td>
<td>--</td>
</tr>
<tr>
<td>5321605-6</td>
<td>AJ01B50</td>
<td>3-15</td>
<td>Direct Reading**</td>
<td>--</td>
</tr>
</tbody>
</table>

*NOMENCLATURE appears only on the H/A Station Specification Sheet included in Instruction Books furnished on system or contract jobs. A "5" in the third position of the Nomenclature indicates that the H/A Station module is complete with enclosure. Part No. 5322407 2 An "X" in any Nomenclature position indicates that the instrument is special.

**SCALE LEGEND engraved in terms of variable such as, FLOW, LEVEL, PRESSURE.
FIGURE 11 Parts Drawing, P91 10, Hand Automatic Station
FIGURE 12 - Parts Drawing P91 7, Hand Relay Part No. 5321995 1
NOTE. FOR MECHANISM ASSEMBLY SPECIFY TYPE, PART NUMBER, AND RANGE OF INSTRUMENT.

ALSO FOR POINTER (ITEM 5B) SPECIFY WHETHER LEFT, RIGHT, OR BOTH LEFT AND RIGHT ARE DESIRED.

ALSO FOR SCALE (ITEM 6) SPECIFY LEGEND AND RANGE FIGURES.

FIGURE 13 - Parts Drawing P12 5 Vertical Gage Unit
Product Warranty

Bailey Meter Company warrants the products manufactured by it to be free from defects in material and workmanship and will repair or replace, at its option, free of charge, f.o.b. its factory, such part or parts which prove defective within one year from date of shipment. In respect to any products which are not an integral part of a product manufactured by the Company, the warranty given by the manufacturer thereof shall apply.

Shipping Damage

We strongly recommend that you inspect and test your instrument as soon as you receive it. If the instrument is damaged or operates improperly, notify the carrier for inspection of the shipment. The carrier's claim agent will prepare a report of damage, a copy of which should be forwarded to your nearest Bailey District Office (see back cover for location). The District Office will then tell you how to have the instrument repaired or replaced.

Service

The Bailey Meter Company is vitally concerned that your Bailey instrument provides continued, fine performance. This instruction manual is designed to fully describe the correct installation, operation, and maintenance of your instrument under recommended conditions. If the need arises, factory-trained Service Engineers are on call for prompt, in-plant maintenance. Telephone or write your nearby Bailey District Office to make arrangements for this service (see back cover for location and telephone number).

Replacement Parts and Supplies

Complete parts drawings and recommended spare parts kit information are included in this instruction manual. When replacement parts or supplies are required for maintenance of your Bailey instrument, contact your nearest Bailey District Office (see back cover for location). Always specify complete data on the instrument nameplate on your inquiry or order for parts. Common parts are available for shipment within 48 hours on a speed order basis.
Bailey Meter Company District Offices, U.S.A.

California
- San Francisco
 - Code 415
 - Phone 989 6140
- Los Angeles
 - Code 213
 - Phone 283 1187

Colorado
- Denver
 - Code 303
 - Phone 757 5408

Georgia
- Atlanta
 - Code 404
 - Phone 378 4348

Illinois
- Chicago
 - Code 312
 - Phone 427 7324

Louisiana
- New Orleans
 - Code 504
 - Phone 488 0841

Massachusetts
- Boston
 - Code 617
 - Phone 426 0465

Michigan
- Detroit
 - Code 313
 - Phone 357 0440

Minnesota
- St Paul
 - Code 612
 - Phone 645 7752

Missouri
- Kansas City
 - Code 816
 - Phone 361 4907
- St Louis
 - Code 314
 - Phone 962 5532

New York
- Buffalo
 - Code 716
 - Phone 839 3662
- New York
 - Code 212
 - Phone 986 8770
- Schenectady
 - Code 518
 - Phone 374 7991

New Jersey
- East Orange
 - Code 201
 - Phone 674 6830

North Carolina
- Charlotte
 - Code 704
 - Phone 334 9161

Ohio
- Cincinnati
 - Code 513
 - Phone 281 0132
- Cleveland
 - Code 216
 - Phone 851 8600

Pennsylvania
- Philadelphia
 - Code 215
 - Phone 664 3282
- Pittsburgh
 - Code 412
 - Phone 921 6356

Texas
- Dallas
 - Code 214
 - Phone 363 6295
- Houston
 - Code 713
 - Phone 774 9605

Washington
- Seattle
 - Code 206
 - Phone 374 9300

Wisconsin
- Milwaukee
 - Code 414
 - Phone 461 1310

Bailey Meter Company Ltd., Canada

Alberta
- Edmonton
 - Code 403
 - Phone 488 3436

British Columbia
- Vancouver
 - Code 604
 - Phone 731 3709

Manitoba
- Winnipeg
 - Code 204
 - Phone 943 1481

Nova Scotia
- Halifax
 - Code 902
 - Phone 455-0574

Ontario
- Ottawa
 - Code 613
 - Phone 722 1373
- Toronto
 - Code 416
 - Phone 444 8488

Quebec
- Montreal
 - Code 514
 - Phone 489 3881

Bailey Meter Company · Wickliffe, Ohio 44092
In Canada: Bailey Meter Company Limited, Montreal, Canada