Mini-Line® 500 Manual Stations
Type AL

Bailey Babcock & Wilcox
INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTALLATION</td>
<td>3</td>
</tr>
<tr>
<td>Pre-Service Adjustment Check</td>
<td>3</td>
</tr>
<tr>
<td>Mounting Manual Station on Panel</td>
<td>3</td>
</tr>
<tr>
<td>Installing Connecting Tubing</td>
<td>3</td>
</tr>
<tr>
<td>Cleaning Scale Cover</td>
<td>3</td>
</tr>
<tr>
<td>Placing In Service</td>
<td>3</td>
</tr>
<tr>
<td>OPERATING FUNCTIONS</td>
<td>4</td>
</tr>
<tr>
<td>Set Point Manual Station</td>
<td>4</td>
</tr>
<tr>
<td>Basic Manual Station</td>
<td>4</td>
</tr>
<tr>
<td>Bias Manual Station</td>
<td>5</td>
</tr>
<tr>
<td>Tie Back Manual Station</td>
<td>5</td>
</tr>
<tr>
<td>ROUTINE MAINTENANCE</td>
<td>6</td>
</tr>
<tr>
<td>CORRECTIVE MAINTENANCE</td>
<td>7</td>
</tr>
<tr>
<td>Vertical Cage Unit Adjustment</td>
<td>7</td>
</tr>
<tr>
<td>Hand Relay Disassembly</td>
<td>7</td>
</tr>
<tr>
<td>Hand Relay Adjustment</td>
<td>8</td>
</tr>
<tr>
<td>Bias Relay Disassembly</td>
<td>8</td>
</tr>
<tr>
<td>Bias Relay Ball and Nozzle Adjustment</td>
<td>9</td>
</tr>
<tr>
<td>Bias Relay Adjustment</td>
<td>9</td>
</tr>
<tr>
<td>SCHEMATIC OPERATION</td>
<td>10</td>
</tr>
<tr>
<td>Hand Relay</td>
<td>10</td>
</tr>
<tr>
<td>Bias Relay</td>
<td>10</td>
</tr>
<tr>
<td>REPLACEMENT PARTS</td>
<td>11</td>
</tr>
<tr>
<td>Spare Parts Kits</td>
<td>11</td>
</tr>
<tr>
<td>Ordering Individual Parts</td>
<td>11</td>
</tr>
<tr>
<td>EXPLANATION OF NOMENCLATURE</td>
<td>11</td>
</tr>
</tbody>
</table>
Manual Stations

FIGURE 1 Removing Vertical Gage Unit from Manual Station

FIGURE 2 Removing Snapout Cover from Vertical Gage Unit

INSTALLATION

Pre-Service Adjustment Check

IMPORTANT: Before placing H.A Station in service, check adjustment of vertical gage units as outlined below. For convenience, perform this check at a test bench before the H.A Station is installed in the panel.

1. Position H.A Station at angle at which it will be mounted in service. Apply pressure corresponding to 10% scale to H.A Station input connection. If pointer reads correctly, proceed to step 4.

2. If pointer does not read correctly, remove vertical gage unit from H.A Station as outlined in Figure 1.

3. Remove snapout cover (Figure 2) and turn zero adjustment screw until pointer reads correctly. Reinstall cover.

4. Apply pressure to gage unit corresponding to 90% and 50% scale. If pointer readings are correct, proceed to step 5. If readings are incorrect, refer to "Vertical Gage Unit Adjustment", page 7.

Mounting Manual Station on Panel

Manual Stations are designed for plug-in mounting in a panel mounted enclosure (Figure 3). Install enclosure as follows:

5. Make panel cutout in accordance with Figure 3.

6. Loosen mounting screw on front plate which secures Manual Station to enclosure, and remove Station.

7. Slide enclosure thru cutout from front of panel.

8. Place mounting clips (in bag tied to enclosure) in position on enclosure. Tighten clip screws securely against panel.

9. Slide Manual Station into enclosure and secure with mounting screw in front plate.

Installing Connecting Tubing

10. Connect external tubing to manifold connections on rear of enclosure (Figure 3). Connection ports are 1.418 NPT female. Use 1” OD copper, aluminum, or plastic tubing.

Cleaning Scale Cover

11. Remove protective tape from scale cover. Clean cover with toothpaste or "Plastar", plastic cover cleanser and polish (obtainable from Bailey Meter Company in 10 ounce jar - specify Part Number 199274 1).

CAUTION Do not use a solvent which will scratch cover finish or react with plastic cover.

Placing in Service

The Manual Station may now be placed in service as outlined below.

12. Turn on supply pressure to Manual Station (check external tubing connections for leakage).

13. Adjust hand control knob on front plate for desired output (see Figures 4 thru 7 for typical applications).
OPERATING FUNCTIONS

Set Point Manual Station

Refer to Figure 4. Output pressure from the Set Point Manual Station is normally applied to a Controller to establish the control set point. The output pressure is produced by a hand relay (see Figure 11) which is manually adjusted by the knob on the Station front plate. A double pointer vertical gage unit indicates Manual Station output (SET POINT) pressure and input (METER) pressure to the Controller.

Basic Manual Station

Refer to Figure 5. Output pressure from the Basic Manual Station is normally applied to a power unit (control drive, valve, etc.) for remote control. The output pressure is produced by a hand relay (see Figure 11) which is manually adjusted by a knob on the Station front.

FIGURE 3 Manual Station Mounting Dimensions

FIGURE 4 - Typical Application of Set Point Manual Station
plate. A single pointer vertical gage unit indicates Manual Station output (CONTROL) pressure. A double pointer vertical gage unit indicates Manual Station output (CONTROL) pressure and the POSITION of the power unit.

Bias Manual Station

Refer to Figure 6. Output pressure from the Bias Manual Station is normally applied to a power unit (control valve, etc.) for remote control. The output pressure is produced by a bias relay (see Figure 12) which is manually adjusted by a knob on the Station front plate. A double pointer vertical gage unit indicates input (LOADING) pressure from a Controller and Manual Station output (BIAS) pressure.

Tie-Back Manual Station

Refer to Figure 7. Output pressure from the Tie-Back Manual Station is normally applied to a Hand/Auto Station to control the output pressure of a Controller. The Manual Station output pressure is produced by a hand relay (see Figure 11) which is manually adjusted by the knob on the Station front plate. A double pointer vertical gage unit indicates Manual Station output (TIE BACK) pressure and Controller (RELAY) output pressure.

FIGURE 5 Typical Application of Basic Manual Station

FIGURE 6 Typical Application of Bias Manual Station

FIGURE 7 Typical Application of Tie-Back Manual Station
ROUTINE MAINTENANCE

1. Maintain a clean air supply, free of oil or moisture.

2. Check filter supply inlet port at manifold shortly after installation. If filter items 2B and 2C (Figure 13) must be replaced, remove wire mesh disc, felt pad, and second wire mesh disc. Install new filter, making certain wire mesh disc is inserted in inlet port before inserting felt pad.

3. Periodically depress orifice clean out plunger (Figure 8) on rear of hand or bias relay to insure that the orifice remains open and clean. CAUTION: This operation should only be performed when relay is being bench tested since depressing the plunger while relay is in service may disrupt the process.

4. Whenever necessary, clean plastic scale cover as follows:
 a. Remove (and replace) scale cover as shown in Figure 9.
 b. Clean cover with a soft cloth which will not scratch the plastic surface. Use toothpaste or "Plastar", plastic cover cleaner and polish (obtainable from Bailey Meter Company, in 10-ounce jar—specify Part No. 199271). Do not use a solvent which will scratch cover finish or react with plastic cover.

FIGURE 8 Rear View of Manual Station

FIGURE 9 Removing and Replacing Vertical Gage Scale Cover
Vertical Gage Unit Adjustment

If operational faults occur which are traced to the vertical gage units, make the following adjustment checks:

1. Remove gage unit from Manual Station as shown in Figure 1. Pry off snapout cover and remove side cover for access to gage unit adjustments (see Figure 2).

2. Apply pressure to Bourdon tube and check block assembly for leakage with a soapsuds solution. If a leak is found, replace entire gage unit. The damaged unit may be returned to the factory for repair.

3. Check all links to see that they are properly connected and that they move freely with Bourdon tube movement.

4. Make certain that indicating pointer does not rub against side or face of scale. If necessary, bend pointer slightly until it clears scale.

5. Check pointer adjustment as outlined below.
 a. Apply pressure to gage equivalent to first major scale division above 0% scale. If pointer does not read correctly, turn zero adjustment screw (Figure 10) until desired reading is obtained.
 b. Apply pressure to gage equivalent to first major scale division below 100% scale. If pointer does not read correctly, turn range adjustment screw (Figure 10) until desired reading is obtained.
 c. Repeat steps 5a and 5b until pointer reads correctly at both scale divisions.
 d. Apply pressure to gage equivalent to mid-scale division. If pointer does not read correctly, but does read correctly in steps 5a and 5b above, alter the shape of U-link at free end of Bourdon tube as follows: 1) If mid-scale pointer reading is low, spread link slightly, or 2) If mid-scale pointer reading is high, close link slightly.

6. Repeat steps 5a thru 5d until pointer reads correctly over full scale.

7. Apply 2 psig to Bourdon tube (pointer will read slightly below minimum scale mark). Loosen minimum stop screws (Figure 10) and position minimum stop next to Bourdon tube end stop; tighten screws.

8. Apply pressure to Bourdon tube corresponding to maximum scale value plus 0.25 psig (pointer will read slightly above maximum scale mark). Loosen maximum stop screws and position maximum stop next to Bourdon tube end stop; tighten screws.

9. To return gage unit to service, reverse the order of the operations outlined in step 1 above.

Hand Relay Disassembly

To disassemble the Hand Relay (Part No 5321995) for cleaning or replacement of parts, proceed as follows:

1. Refer to Figure 13. Disconnect tubing...
and remove two screws (21) holding manifold support (19) to support bracket assembly (7).

2. Remove two socket head screws (23) holding manifold to Relay and slide manifold and support bracket rearward.

3. Remove two socket head screws (12) holding Relay to support bracket (7) and remove Relay.

4. Refer to Figure 15. Unscrew valve cap (7) and remove valve stem (11), inlet valve seat (13), and valve seat spring (15).

CAUTION: Do not disturb setting of relay adjustment screw (Figure 8) at center of valve cap. This setting is factory set and should not be disturbed unless control bellows has been removed or replaced (see "Hand Relay Adjustment").

5. Unscrew orifice clean out assembly (4) and orifice (14).

6. Relieve spring compression by rotating center adjustment gear (27) counterclockwise until it turns easily.

7. Remove four nuts (at corners of valve housing face) and screws securing spring housing (23) to valve housing (9) and separate housings.

8. Pull control bellows assembly (16) from valve housing (9). (Control bellows assembly is held by exhaust valve diaphragm which snaps into place around valve seat.)

9. If desired, unscrew loading spring assembly (19) from adjustment shaft (left hand thread).

10. To reassemble, reverse above procedure, observing the following precautions:

a. When replacing control bellows assembly (16), make certain exhaust valve diaphragm (29) is properly snapped into place around exhaust valve seat.

b. When replacing orifice clean out assembly (4), make certain that clean out wire is not bent and passes cleanly thru the orifice.

c. Make certain that all O-rings are undamaged and properly installed. Apply lubricant to O-rings when reassembling relay.

Hand Relay Adjustment

1. Connect output pressure line of Relay, thru a petcock, to a volume chamber equipped with a suitable pressure gage (0-30 psig) for indicating chamber pressure. Volume chamber may be any pressure tight container with volume of about 300 cubic inches.

2. Open petcock and adjust Manual Station control knob to obtain 3 psig pressure in volume chamber.

3. Close petcock and adjust control knob to obtain 27 psig (for 3-27 range) or 15 psig (for 3-15 range) output pressure from Relay (read output pressure on Manual Station gage).

4. Open petcock and note time rate of pressure increase in volume chamber.

5. Close petcock and adjust control knob to obtain 3 psig output pressure from Relay.

6. Open petcock and note time rate of pressure decrease in volume chamber.

7. If inlet valve seat is properly adjusted, the time rate of pressure increase as noted in step 4 will be equal to the time rate of pressure decrease as noted in step 6. If these rates are not equal (or if the control bellows or nozzle bellows has been replaced) it will be necessary to make the following adjustment.

a. If time rate of pressure increase is greater than the rate of pressure decrease, turn adjustment screw (Figure 8) counterclockwise.

b. If time rate of pressure decrease is greater than the rate of pressure increase, turn adjustment screw clockwise.

NOTE: By turning the relay adjustment screw (Figure 8) on the rear of the Manual Station, the inlet valve seat position can be changed with respect to the neutral position of the exhaust valve seat, in effect, controlling the relative openings of the inlet valve and exhaust valve for a given position of the control bellows.

Bias Relay Disassembly

To disassemble the Bias Relay (Part No 5321885 2) for cleaning or replacement of parts, proceed as follows.
1 Refer to Figure 13 Remove Relay from Manual Station as outlined in steps 1, 2, and 3 under 'Hand Relay Disassembly'.

2 Refer to Figure 14 Unscrew valve cap (7) and remove valve stem (12), inlet valve seat (16), and valve seat spring (17).

CAUTION: Do not disturb setting of relay adjustment screw (Figure 8) at center of valve cap. This setting is factory set and should not be disturbed unless control bellows or nozzle bellows has been damaged or replaced or the ball and nozzle assembly has been disassembled.

3 Unscrew orifice clean-out assembly (5) and orifice (3).

4 Remove four screws (at corners of valve housing face) securing valve housing (13) to bellows housing (30), and separate housings.

5 Pull control bellows assembly (6) from valve housing (13) (Control bellows assembly is held by exhaust valve diaphragm which snaps into place around valve seat.)

6 Remove four screws securing spring housing (25) and vane nozzle housing (40) to bellows housing (30).

7 Separate housings and remove nozzle bellows.

CAUTION: Do not disturb ball and nozzle assembly unless absolutely necessary. If, however, the assembly is disturbed because of necessary disassembly procedures, perform the steps outlined under 'Bias Relay Ball and Nozzle Adjustment' before proceeding to step 9.

8 Remove loading bellows and spring assembly by turning center adjustment gear clockwise until bellows and spring assembly are free of adjustment shaft.

9 To reassemble, reverse above procedure, observing the precautions outlined under 'Hand Relay Disassembly', step 10. Also apply O ring lubricant to U cup packing (Item 32, Figure 14) when reassembling relay.

Bias Relay Ball and Nozzle Adjustment

1 When making an adjustment on the ball and nozzle assembly, correct setting of the ball with respect to the nozzle is best made by holding the ball against the nozzle with a blunt ended instrument, and alternately tightening each screw about 1/2 turn. Tighten screws securely.

a. To check setting, reassemble Relay, omitting spring housing and loading bellows and spring assembly. Insert a piece of sealing gasket material between the nozzle housing and the bellows housing over the output pressure passage (passage opening into volume surrounding ball and nozzle) so output pressure will not escape to atmosphere.

b. Apply normal supply pressure to supply pressure port and connect a suitable pressure gage (0-30 psig) to output pressure post. With no external force applied to ball, the distance between ball and nozzle is at maximum and the output pressure should be approximately zero. Manually, press ball against nozzle opening using a blunt-ended instrument to prevent side thrust. The output pressure should increase to within 3 psi of supply pressure. An output pressure less than this indicates that the ball is not centered with respect to the nozzle and adjustment must be repeated.

Bias Relay Adjustment

NOTE: If the following checks and adjustments cannot be made with Manual Station connected in the system, the output pressure line must be closed off or output connection plugged.

1. Adjust Manual Station control knob for zero bias (BIAS pressure equals LOADING pressure).

2. Apply pressure exactly equal to the supply pressure to Manual Station input connection. This is most easily accomplished by connecting into supply pressure line.

3. Manual Station BIAS pressure should be 3 psi (+1/4 psi) less than input pressure (supply pressure). If not, turn relay adjustment screw (Figure 8) to obtain correct BIAS pressure.

NOTE: By turning the relay adjustment screw (Figure 8) on the rear of the Manual Station, the inlet valve seat position can be changed with respect to the neutral position of the exhaust valve seat, in effect, controlling the relative openings of the inlet valve and exhaust valve for a given position of the control bellows.

4. If correct reading cannot be obtained in step 3 above, and if the ball and nozzle assembly was disturbed, check the ball and nozzle assembly adjustment as outlined on page 9, then repeat steps 1, 2, and 3 above.
SCHEMATIC OPERATION

Hand Relay

Output pressure from the Set Point, Basic, and the Back Manual Stations is produced by a hand relay (Figure 11). Compression of the loading spring is opposed by pressure in the control bellows so that spring compression and output pressure are always proportional when the unit is balanced.

Turning the control knob in the "increase" direction causes compression of the loading spring. The resulting compression closes the exhaust valve and opens the inlet valve, admitting supply air to the control bellows chamber. The control bellows pressure increases until the bellows has expanded sufficiently to restore the inlet exhaust valve mechanism to its original position (inlet valve closed, exhaust valve floating). Output pressure is then proportional to the increased loading spring compression, and the system is again at balance.

Turning the control knob in the "decrease" direction reverses the operation described above.

Bias Relay

Output pressure from the Bias Manual Station is produced by the bias relay (Figure 12). Bias relay output pressure is controlled by the input pressure and the bias loading spring. Variations in input pressure applied to the inside of the loading bellows are exactly reproduced in the output pressure, while a constant difference (bias) between input pressure and output pressure is maintained by the bias spring. The compression or tension of the bias spring can be adjusted by the control knob to exert a maximum force on the loading bellows equivalent to ±12 psi bias for a 3-15 range or ±24 psi bias for a 3-27 range.

When the bias relay is in equilibrium, output pressure balances both the input pressure and the force exerted by the compression or tension of the bias spring. This output pressure, plus control bellows spring loading, also balances the nozzle pressure. The control bellows spring exerts a force (compression) on the bellows equivalent to a pressure of 3 psi so that at balance, the nozzle pressure is 3 psi greater than the output pressure. This differential insures the proper direction of flow thru the nozzle.

An increase in input pressure or in bias spring compression expands the loading bellows, moving the ball closer to the nozzle. The air flow from the nozzle is retarded, increasing the pressure in the nozzle bellows. As the nozzle bellows expands, the control bellows is compressed, closing the exhaust valve and opening the inlet valve. Supply air flows thru the inlet valve, increasing the output pressure and starting a restoring action at the loading bellows and at the control bellows. As the output pressure increases, the loading bellows is compressed, moving the ball away from the nozzle, and the control bellows expands, moving the inlet-exhaust valve assembly toward its original position. When the control pressure has increased to a value equivalent to the new input pressure plus bias spring loading, the loading bellows and the control bellows will have been restored to their "at balance" position and the relay is again in equilibrium.

A decrease in input pressure or in bias spring compression reverses the operation of the relay.
REPLACEMENT PARTS

Spare Parts Kits

The Spare Parts Kits shown in Figures 13 thru 16 should be carried in stock. Specify the Spare Parts Kit part number to order a complete kit.

Ordering Individual Parts

Figures 13 thru 16 are Parts Drawings of the Manual Stations. Normally these drawings apply to the unit furnished. However, there may be individual differences in specific units because of:

- design changes made since the printing of this Instruction Section, or
- special design of the Manual Stations to make them suitable for a special application.

Therefore, when ordering parts, assure the receipt of correct replacements by specifying the Manual Station Module Part Number.

EXPLANATION OF NOMENCLATURE

<table>
<thead>
<tr>
<th>MANUAL STATION MODULE PART NO.</th>
<th>MANUAL STATION NOMENCLATURE*</th>
<th>RANGE (PSIG)</th>
<th>SCALE LEGEND LEFT INDICATOR</th>
<th>SCALE LEGEND RIGHT INDICATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5323260-1</td>
<td>AL02A10</td>
<td>3-27</td>
<td>METER</td>
<td>SET POINT</td>
</tr>
<tr>
<td>5323260 2</td>
<td>AL02A50</td>
<td>3-27</td>
<td>DIRECT READING**</td>
<td>SET POINT</td>
</tr>
<tr>
<td>5323260-3</td>
<td>AL01A10</td>
<td>3-15</td>
<td>METER</td>
<td>SET POINT</td>
</tr>
<tr>
<td>5323260 4</td>
<td>AL01A50</td>
<td>3-15</td>
<td>DIRECT READING**</td>
<td>SET POINT</td>
</tr>
<tr>
<td>5323260 5</td>
<td>AL02D10</td>
<td>3-27</td>
<td>RELAY</td>
<td>RESET</td>
</tr>
<tr>
<td>5323260-6</td>
<td>AL01D10</td>
<td>3-15</td>
<td>RELAY</td>
<td>RESET</td>
</tr>
<tr>
<td>5323270-1</td>
<td>AL02B10</td>
<td>3-27</td>
<td>CONTROL</td>
<td>POSITION</td>
</tr>
<tr>
<td>5323270-2</td>
<td>AL02B20</td>
<td>3-27</td>
<td>CONTROL</td>
<td>POSITION</td>
</tr>
<tr>
<td>5323270-3</td>
<td>AL01B10</td>
<td>3-15</td>
<td>CONTROL</td>
<td>BIAS</td>
</tr>
<tr>
<td>5323270 4</td>
<td>AL01B20</td>
<td>3-15</td>
<td>CONTROL</td>
<td>BIAS</td>
</tr>
<tr>
<td>5323280 1</td>
<td>AL02C10</td>
<td>3-27</td>
<td>LOADING</td>
<td>BIAS</td>
</tr>
<tr>
<td>5323280-2</td>
<td>AL01C10</td>
<td>3-15</td>
<td>LOADING</td>
<td>BIAS</td>
</tr>
</tbody>
</table>

*NOMENCLATURE appears only on the Manual Station Specification Sheet included in Instruction Books furnished on system or contract jobs. A "5" in the third position of the Nomenclature indicates that the Manual Station module is complete with enclosure. Part No. 5322670-1. An "X" in any Nomenclature position indicates that the instrument is special.

**SCALE LEGEND engraved in terms of variable, such as FLOW, LEVEL, PRESSURE.
FIGURE 18 Parts Drawing P91 1, Manual Station Assembly
Table 1: Parts List

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CODE LABEL</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>SPECIFY NO ON LABEL WHEN ORDERING PARTS</td>
</tr>
<tr>
<td>2</td>
<td>NO 10</td>
<td>PL. PATT MED LK WASH 8 REQD</td>
</tr>
<tr>
<td>3</td>
<td>5316464</td>
<td>ORIFICE ASSY</td>
</tr>
<tr>
<td>4</td>
<td>5311428</td>
<td>O RING</td>
</tr>
<tr>
<td>5</td>
<td>5316478</td>
<td>ORIFICE CLEANOUT</td>
</tr>
<tr>
<td>6</td>
<td>5316974</td>
<td>BELLOWS ASSY</td>
</tr>
<tr>
<td>7</td>
<td>5316899</td>
<td>VALVE CAP</td>
</tr>
<tr>
<td>8</td>
<td>5311428</td>
<td>O RING</td>
</tr>
<tr>
<td>9</td>
<td>5316808</td>
<td>VALVE ADJ SCREW</td>
</tr>
<tr>
<td>10</td>
<td>10 32x1 3/4</td>
<td>FIL HD SCREW 4 REQD</td>
</tr>
<tr>
<td>11</td>
<td>5311428</td>
<td>O RING</td>
</tr>
<tr>
<td>12</td>
<td>5316811</td>
<td>VALVE STEM</td>
</tr>
<tr>
<td>13</td>
<td>5321893</td>
<td>VALVE HOUSING</td>
</tr>
<tr>
<td>14</td>
<td>5317009</td>
<td>VOLUME FILLER</td>
</tr>
<tr>
<td>15</td>
<td>5311428</td>
<td>O RING</td>
</tr>
<tr>
<td>16</td>
<td>5316977</td>
<td>VALVE SPAT ASSY</td>
</tr>
<tr>
<td>17</td>
<td>5316944</td>
<td>VALVE SEAT SPRING</td>
</tr>
<tr>
<td>18</td>
<td>5311428</td>
<td>O RING 4 REQD</td>
</tr>
<tr>
<td>19</td>
<td>5316813</td>
<td>DIAPHRAGM CLAMP</td>
</tr>
<tr>
<td>20</td>
<td>5316812</td>
<td>EXHAUST VALVE DIAPHRAGM</td>
</tr>
<tr>
<td>21</td>
<td>5320156</td>
<td>BELLOWS SPRING</td>
</tr>
</tbody>
</table>

Note
For Pt No 5321885 2, rotate item (31) 180° to position shown by dashed lines.

Diagram

See Figure 14 - Parts Drawing P91-8, Bias Relay Assembly Part No 5321885 2.
PARTS LIST

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PART NO.</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CODE LABEL</td>
<td>SPECIFY NO. WHEN ORDERING PARTS</td>
</tr>
<tr>
<td>2</td>
<td>SEE TABLE</td>
<td>MINIMUM STOP</td>
</tr>
<tr>
<td>3</td>
<td>SEE TABLE</td>
<td>MAXIMUM STOP</td>
</tr>
<tr>
<td>5</td>
<td>SEE NOTE</td>
<td>MECHANISM ASSY. INCLUDES ITEMS 5A & 5B</td>
</tr>
<tr>
<td>5A</td>
<td>SEE NOTE</td>
<td>Bourdon Tube & Block Assy</td>
</tr>
<tr>
<td>5B</td>
<td>SEE NOTE</td>
<td>Pointer, See Table</td>
</tr>
<tr>
<td>6</td>
<td>SEE NOTE</td>
<td>Scale Assy</td>
</tr>
<tr>
<td>7</td>
<td>33 48V, 18</td>
<td>Pan HD STL SCR. 4 REQD</td>
</tr>
<tr>
<td>8</td>
<td>NO 1203</td>
<td>SRK LK WASH. 4 REQD</td>
</tr>
<tr>
<td>9</td>
<td>5316456 1</td>
<td>WASHER 2 REQD</td>
</tr>
<tr>
<td>10</td>
<td>5314337 1</td>
<td>FASTENER, 2 REQD</td>
</tr>
<tr>
<td>11</td>
<td>5314336 1</td>
<td>COVER PLATE ASSY</td>
</tr>
<tr>
<td>12</td>
<td>6 32x7/8</td>
<td>PAN HD EXT SEAMS 3 REQD</td>
</tr>
<tr>
<td>13</td>
<td>SEE NOTE</td>
<td>COVER</td>
</tr>
<tr>
<td>14</td>
<td>6 32x1/4</td>
<td>PAN HD EXT SEAMS 4 REQD</td>
</tr>
<tr>
<td>15</td>
<td>5314294 1</td>
<td>SCALE WINDOW</td>
</tr>
<tr>
<td>16</td>
<td>SEE TABLE</td>
<td>GASKET</td>
</tr>
<tr>
<td>17</td>
<td>5322355 1</td>
<td>GASKET</td>
</tr>
<tr>
<td>18</td>
<td>SEE NOTE</td>
<td>Case Assy</td>
</tr>
</tbody>
</table>

SPARE PARTS KIT

<table>
<thead>
<tr>
<th>PART NO</th>
<th>QUANTITY</th>
<th>ITEM NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>256020</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

PARTS DRAWING

FIGURE 13 Parts Drawing P12-5, Vertical Gage Unit Assembly

NOTE SPECIFY TYPE, MODEL, SERIAL NUMBER, AND RANGE OF INSTRUMENT

ALSO FOR POINTER (ITEM 5B) SPECIFY WHETHER LEFT, RIGHT, OR BOTH LEFT AND RIGHT ARE DESIRED

ALSO FOR SCALE (ITEM 6) SPECIFY LEGEND AND RANGE FIGURES

ITEM 2

<table>
<thead>
<tr>
<th>DOUBLE</th>
<th>3 27</th>
<th>5315411 1</th>
<th>5315411 2</th>
<th>532195 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE</td>
<td>3 27</td>
<td>5315411 1</td>
<td>5315411 2</td>
<td>532195 1</td>
</tr>
<tr>
<td>SINGLE</td>
<td>3 15</td>
<td>5315411 1</td>
<td>5315411 1</td>
<td>532195 1</td>
</tr>
<tr>
<td>DOUBLE</td>
<td>3 15</td>
<td>5315411 1</td>
<td>5315411 1</td>
<td>532195 2</td>
</tr>
</tbody>
</table>
BALEY METER COMPANY
HEADQUARTERS
29601 Euc d Avenue
W.2:fe O 44092

U.S.A. D STR CT OFF CES
Ga: lorn a Los Angeles
Co: lorn a San Fracisco
Co: orado Denver
Connecticut New Haven
F or da Jacksonville
Georgia Atlanta
no S. Ch ago
Kentucky Louisville
Louisiana New Orleans
Ma: Ber Augusta
Maryland Baltimore
Massachusetts Boston
Michigan Detroit
Minnesota St. Paul
Missouri Kansas City
Missouri St. Louis
North Carolina Charlotte
New Jersey East Orange
New York Buffalo
New York Syracuse
O h i o Columbus
Ohio Cleveland
Pennsylvania PEnnsylvania
Pen ny van a P ottawo
Tex as Dallas
T e x as Houston
V ir ginia Richmond
V irginia Norfolk
W est Virginia Charleston
W.2:fe Ohio Columbus

BALEY METER COMPANY L M TED
POINTE CLAIRE 730 QUEBEC

A be ta Edmonton
Br i t i sh Columbia Vancouver
Man i toba Winnipeg
New S cott a Hu tton
Ont a rio Ottawa
O nt a rio Toronto
Que ber Montreal

BALEY METER AUSTRAL A PTY LTD
REGENTS PARK N.S.W 2143

N.S.W. Sydney
Queensland Brisbane
South Australia Adelaide
Victoria Melbourne
Western Australia Perth

INTERNATIONAL REPRESENTATIVES

Argentina Buenos Aires
Brazil Rio de Janeiro
Chile Santiago
England Croydon
France Paris
New Delhi India
Manila
Japan Tokyo
Mexico Mexico City
Puerto Rico San Juan
Spain Madrid
Taiwan Taipei
Turkey Istanbul

And Other Principal Cities

Bailey

a subsidiary of Babcock & Wcox U.S.A.