The Reset Booster Relay is a pneumatic transmitting device which operates in conjunction with a nozzle-vane assembly to produce an output pressure which is proportional to a measured variable. The Booster Relay is always a component part of a measuring and transmitting instrument and is mounted integrally with that instrument.
A schematic operating diagram of the Reset Booster Relay is shown in Figure 1.

Three diaphragms divide the inside of the unit into four air pressure chambers. The diaphragms move together since they are clamped at their centers by the diaphragm assembly. Since chambers 1 and 4 are connected and are equal in effective diaphragm area, their opposing forces on the diaphragm assembly balance out. Chamber 2 is open to atmosphere. The operator spring exerts a force downward on the diaphragm assembly. Thus, since chamber 3 pressure exerts a force upward, the position of the diaphragm assembly is a direct function of chamber 3 pressure.

Supply air enters chamber 3 and the nozzle thru a pressure reducing orifice. The rate of air flow from the nozzle determines the magnitude of the pressure in chamber 3. At balance, this pressure is about 2 psig, which is the pressure required to balance the downward force of the operator spring.

When the measured variable increases, linkage from the measuring element moves the vane closer to the nozzle tip, retarding the flow of air from the nozzle and increasing the pressure in chamber 3. The pressure increase moves the diaphragm assembly up, opening the inlet valve and closing the exhaust valve. Supply air enters chamber 1 thru the inlet valve, causing the output pressure of the Booster Relay to begin to increase.

Chamber 1 pressure is also applied to the restoring bellows. As the pressure increases, the restoring bellows extends, moving the vane away from the nozzle. The resultant increased rate of air flow from the nozzle causes the pressure in chamber 3 to begin to decrease.

Chamber 1 pressure will continue to increase until the vane is restored to that position with respect to the nozzle which produces a pressure of 2 psig in chamber 3. The oper-
ator spring by then has moved the diaphragm assembly down to its original position, closing the inlet valve and causing the Booster Relay output pressure to stabilize at the new, increased value.

When the measured variable decreases, the operation of the Booster Relay as described above is reversed. The vane moves away from the nozzle, decreasing the pressure in chamber 3 below 2 psig. The operator spring moves the diaphragm assembly down, opening the exhaust valve and permitting the output pressure to begin to decrease thru chamber 1. As the pressure in the restoring bellows decreases, the bellows and consequently, the restoring beam begin to retract. The force beam, following the restoring beam, moves the vane closer to the nozzle, increasing the pressure in chamber 3. Chamber 1 pressure will continue to decrease until the vane is restored to that position with respect to the nozzle which produces a pressure of 2 psig in chamber 3. The diaphragm assembly by then has been restored to its original position, with the inlet valve closed and Booster Relay output pressure stabilized at the new, decreased value.

FIGURE 2 - Output and Supply Connections

Note that supply air also enters chamber 1 thru a pressure-reducing orifice. When the Relay is at balance, the bleed of air thru this orifice maintains the pressure in chamber 1 slightly above that value required to permit the diaphragm assembly to seat positively against the exhaust valve. The exhaust valve is thus maintained in a "floating" position to facilitate the instrument's speed of response to a change in input.

ROUTINE SERVICING

1. Periodically inspect nozzle tip (Figure 3) and vane (on associated instrument) for deposits of oil, dirt, etc. Clean with a suitable solvent.

2. Periodically replace felt pad air filters as follows

 a. Turn OFF supply air to Booster Relay and disconnect supply air and output lines from Booster (Figure 2).

 b. Remove wire mesh discs (Item 2, Figure 5) and felt pads (Item 8). This is most easily accomplished with a pick.

 c. Replace felt pads. Replace wire mesh discs.

 NOTE: When replacing mesh discs, make certain there is a disc under felt pad in supply connection

 d. Reassemble supply air and output lines to Booster unit. Then turn ON supply air to Booster Relay.
CORRECTIVE MAINTENANCE

If the Booster Relay is not operating satisfactorily, make the checks and adjustments as outlined in the Fault Correction Chart. Refer to the specific subheading for replacement of parts.

If the Booster Relay still does not operate properly after corrective maintenance, it is recommended that the unit be returned to the factory for repair, since realignment of the diaphragm clamping assembly and the required recalibration is extremely critical.

Fault Correction Chart

<table>
<thead>
<tr>
<th>Booster Fault</th>
<th>Probable Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Booster unit output pressure does not immediately increase when flow of air is blocked.</td>
<td>a. Clogged nozzle orifice</td>
<td>a. Depress orifice cleanout plungers WARNING Do not depress plunger if Type AF is used with a selector station, unless station is in manual operation</td>
</tr>
<tr>
<td></td>
<td>b. Leakage around sections of Booster casing</td>
<td>b. Torque four screws clamping Booster sections together to 30 in lb</td>
</tr>
<tr>
<td></td>
<td>c. Dirty filters</td>
<td>c. Remove and replace filters</td>
</tr>
<tr>
<td></td>
<td>d. Booster calibration incorrect</td>
<td>d. Check Booster calibration (see 'Calibration' on page 5)</td>
</tr>
<tr>
<td>2 Booster output sluggish or output increases then drops to zero when flow of air is blocked.</td>
<td>a. Internal leakage</td>
<td>a. Replace Booster Relay.</td>
</tr>
<tr>
<td></td>
<td>b. Dirty filters</td>
<td>b. Remove and replace filters</td>
</tr>
<tr>
<td>3. Booster unit output pressure does not immediately decrease when vane is pulled away from nozzle.</td>
<td>a. Blocked air line from Booster unit to nozzle.</td>
<td>a. Remove line and clean.</td>
</tr>
<tr>
<td></td>
<td>b. Booster calibration incorrect</td>
<td>b. Check Booster calibration (see 'Calibration' on page 5).</td>
</tr>
<tr>
<td></td>
<td>c. Internal leakage</td>
<td>c. Replace Booster Relay</td>
</tr>
</tbody>
</table>
CALIBRATION

The Reset Booster Relay has only one adjustment. The valve adjustment, shown in Figures 1 and 2, adjusts the inlet valve seat to balance the effective areas of the chamber 1 and chamber 4 diaphragms to obtain an even reset rate. This adjustment is sealed with a drop of Locotite cement (Grade C) after factory calibration. Do not change the setting of this adjustment unless absolutely necessary. If the Relay has been disassembled, or if the setting of the valve adjustment has been changed for any reason, check the calibration of the unit as outlined below.

1. Remove Booster Relay from transmitter.

2. Attach calibration block to Relay using screws removed in step 1, and connect in calibration setup as shown in Figure 4. Connect mercury manometer to Booster Relay output pressure connection. Connect another mercury manometer to tee fitting in piping to input connection of calibrator block.

3. Apply supply pressure of 18 psi (for 3-15 psig output range) or 30 psi (for 3-27 psig output range) to Booster Relay supply pressure connection.

4. Slowly apply about 2 psi to calibration block input connection to simulate nozzle back pressure. Note value of pressure, on nozzle back pressure manometer, which causes output pressure to increase at a constant rate. Slowly reduce nozzle back pressure and note pressure which causes output pressure to decrease at a constant rate.

 a. If rate of output pressure rise slows down (decelerates) turn valve adjustment screw clockwise a small amount

 b. If rate of output pressure rise speeds up (accelerates) turn adjustment screw counterclockwise a small amount.

5. Repeat step 4 above until output pressure changes at a constant rate. The difference between the nozzle back pressure which causes a constant rise and that which causes a constant drop should be about 0.1 psi and should occur between 1.6 psi and 2.5 psi.

6. If Booster Relay cannot be calibrated as described above, fault may be caused by leakage. Refer to 'Corrective Maintenance,' to check Booster Relay for leakage.
REPLACEMENT PARTS

Spare Parts Kit

The Spare Parts Kit shown in Figure 5 should be carried in stock. Specify the Spare Parts Kit part number to order a complete kit.

Ordering Individual Parts

Figure 5 is a Parts Drawing for the Reset Booster Relay, Part No. 5319700-□. This drawing will normally apply to the unit furnished. However, there may be individual differences in specific assemblies because of

a. Design changes made since the printing of this Instruction Section, or

b. Special design of equipment furnished to make it suitable for a special application.

Therefore, when ordering parts, assure receipt of correct replacements by specifying on the order

1. The complete part number (stamped on instrument nameplate) and code label number of instrument for which parts are desired

2. The Parts Drawing on which each part is illustrated (The Parts Drawing Number is given in the Figure caption.)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PART NO.</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SEE NOTE 1 CODE LABEL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5320413</td>
<td>WIRE MESH 4 REQD</td>
</tr>
<tr>
<td>3</td>
<td>5316476</td>
<td>ORIFICE CLEANOUT ASSY 2 REQD</td>
</tr>
<tr>
<td>4</td>
<td>5316464</td>
<td>ORIFICE ASSY</td>
</tr>
<tr>
<td>5</td>
<td>5311428</td>
<td>11 O RING 2 REQD</td>
</tr>
<tr>
<td>6</td>
<td>5311428</td>
<td>2 O RING 2 REQD</td>
</tr>
<tr>
<td>7</td>
<td>5316464</td>
<td>ORIFICE ASSY</td>
</tr>
<tr>
<td>8</td>
<td>5320414</td>
<td>FELT PAD, 2 REQD</td>
</tr>
<tr>
<td>9</td>
<td>195104</td>
<td>PLUG, 2 REQD (PT NO 5319700-9 ONLY)</td>
</tr>
</tbody>
</table>

NOTE 1 SPECIFY NUMBER ON CODE LABEL WHEN ORDERING PARTS
NOTE 2 ITEMS 2 THRU 9 IN THE QUANTITIES LISTED ARE AVAILABLE AS SPARE PARTS KIT PT NO 256073 1 SPECIFY THIS NUMBER TO ORDER A COMPLETE KIT

<table>
<thead>
<tr>
<th>PART NO</th>
<th>FOR TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5319700</td>
<td>KPPE RP11 RP13</td>
</tr>
<tr>
<td>5319700</td>
<td>BB, BE, BR, CA CB, CC, CE DC KM LH LU, PG WM EA</td>
</tr>
<tr>
<td>5319700</td>
<td>ADC AD5 AFS KDI4</td>
</tr>
</tbody>
</table>

FIGURE 5 - Parts Drawing P92 15, Booster Relay Assembly, Pt No. 5319700-□
Product Warranty

Bailey Meter Company warrants the products manufactured by it to be free from defects in material and workmanship and will repair or replace, at its option, free of charge, f.o.b. its factory, such part or parts which prove defective within one year from date of shipment. In respect to any products which are not an integral part of a product manufactured by the Company, the warranty given by the manufacturer thereof shall apply.

Shipping Damage

We strongly recommend that you inspect and test your instrument as soon as you receive it. If the instrument is damaged or operates improperly, notify the carrier for inspection of the shipment. The carrier’s claim agent will prepare a report of damage, a copy of which should be forwarded to your nearest Bailey District Office (see back cover for location). The District Office will then tell you how to have the instrument repaired or replaced.

Service

The Bailey Meter Company is vitally concerned that your Bailey instrument provides continued, fine performance. This instruction manual is designed to fully describe the correct installation, operation, and maintenance of your instrument under recommended conditions. If the need arises, factory-trained Service Engineers are on call for prompt, in-plant maintenance. Telephone or wire your nearby Bailey District Office to make arrangements for this service.

Replacement Parts and Supplies

Complete parts drawings and recommended spare parts list information are included in this instruction manual. When replacement parts or supplies are required for maintenance of your Bailey instrument, contact your nearest Bailey District Office (see back cover for location). Always specify complete data on the instrument nameplate on your inquiry or order for parts. Common parts are available for shipment within 48 hours on a speed-order basis.
BAILEY METER COMPANY
HEADQUARTERS
Wickliffe, Ohio 44092

U.S.A. SALES OFFICES

California
Los Angeles
San Francisco

Colorado
Denver

Connecticut
New Haven

Florida
Jacksonville

Georgia
Atlanta

Illinois
Chicago

Kentucky
Louisville

Louisiana
New Orleans

Maine
Augusta

Maryland
Baltimore

Massachusetts
Boston

Michigan
Detroit

Minnesota
Minneapolis

Missouri
Kansas City

Missouri
St. Louis

North Carolina
Charlotte

New Jersey
East Orange

New York
Buffalo

New York
Syracuse

Ohio
Cincinnati

Oklahoma
Cushing

Pennsylvania
Philadelphia

Pennsylvania
Pittsburgh

Texas
Dallas

Texas
Houston

Virginia
Richmond

Washington
Seattle

Wisconsin
Milwaukee

BAILEY METER COMPANY L M TED
PO NTE CLAIRE 730, QUEBEC

Alberta
Edmonton

British Columbia
Vancouver

Manitoba
Winnipeg

Nova Scotia
Halifax

Ontario
Ottawa

Ontario
Toronto

Quebec
Montreal

N.S.W.
Sydney

Queensland
Brisbane

South Australia
Adelaide

Victoria
Melbourne

Western Australia
Perth

BAILEY JAPAN COMPANY LTD
5111 BARAKIN RAYAMA CHO TAGATA GUN
SHI ZUKO KEN JAPAN

INTERNATIONAL REPRESENTATIVES

Argentina
Buenos Aires

Brazil
Rio de Janeiro

Chile
Santiago

England
Croydon

France
Paris

Indonesia
Java, Bandung

Japan
Tokyo

Mexico
Mexico City, D.F.

Puerto Rico
San Juan

Spain
Madrid

Taiwan
Taipei

Turkey
Ankara

And Other Principal Cities

Bailey
a subsidiary of Babcock & Wilcox U.S.A.